جایابی و تعیین اندازه بهینه خازنها و منابع تولید پراکنده با هدف بهبود قابلیت اطمینان و حداقل نمودن تلفات در شبکههای توزیع
- مهندس فریبرز حقیقت دار فشارکی
http://jipet.iaun.ac.ir/article_676187.html
جایابی و تعیین اندازه بهینه خازنها و منابع تولید پراکنده با هدف بهبود قابلیت اطمینان و حداقل نمودن تلفات در شبکههای توزیع
نوع مقاله: مقاله پژوهشی
نویسندگان
دانشکده مهندسی برق، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، ایران
چکیده
مسأله جایابی و تعیین اندازه بهینه تجهیزات در سیستمهای مهندسی یکی از مهمترین و پرچالشترین مسایل کاربردی است. نصب خازن و منابع تولید پراکنده ( DGها)در سیستمهای توزیع مزایای زیادی همچون بهبود قابلیت اطمینان و کاهش تلفات توان را در پی خواهد داشت. البته هزینههای سرمایهگذاری بالایی را هم در بر دارد. درنتیجه استفاده حداکثری از این مزایا تا حد زیادی منوط به انتخاب مکان مناسب جهت نصب آنها است. در این مقاله از الگوریتم جستجوی گروهی با نرخ موفقیت برای جایابی همزمان DG و خازن در سیستم توزیع شعاعی استفاده شده است. تابع هدف مورد استفاده شامل هزینههای مربوط به وقفه قابل انتظار مشتری (ECOST)، انرژی تامین نشده (ENS)، تلفات توان اکتیو سیستم و هزینه سرمایهگذاری، تعمیر و نگهداری بانک خازنی و DG است. بهمنظور ارزیابی اثربخشی الگوریتم پیشنهادی در یافتن جواب بهینه، سناریوهای مختلف نصب DG و خازن در محیط نرم افزار MATLAB R2014a در سیستم توزیع شعاعی 33 شینه استاندارد IEEE شبیهسازی شده است. نتایج شبیهسازی نشان میدهد روش پیشنهادی در مقایسه با روشهای ارائه شده قبلی، قابلیت و توانایی بالایی در حل مسأله جایابی خازن و DG دارد. با استفاده از روش پیشنهادی در این مقاله، مقادیر تلفات توان اکتیو و پروفایل ولتاژ باسها نسبت به سایر روشهای بررسی شده، بهبود یافته است.
کلیدواژهها
موضوعات
عنوان مقاله [English]
Optimal placement and sizing of distributed generations and capacitors for reliability improvement and power loss minimization in distribution networks
نویسندگان [English]
- Majid Salari
- Fariborz Haghighatdar Fesharaki
Department of Electrical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
چکیده [English]
Optimal placement and sizing of equipment in engineering systems is one of the most important and challenging practical problems. Installation of capacitors and distributed generations (DGs) in distribution systems has many benefits, such as improving the reliability as well as reducing the power loss, however, includes high investment costs. Hence, the maximum use of these benefits highly depends on choosing suitable locations for installation. In this paper, the Success Rate Group Search Algorithm (SRGSO) is used for optimal placement and sizing of DG sources and capacitor banks simultaneously in distributed systems. The used objective function includes costs of Expected interruption (ECOST), Energy Not Supplied (ENS), active power losses and DG and capacitor investment, operation and maintenance. To evaluate the effectiveness of the proposed algorithm in finding the optimal solution, various capacitor and DG placement scenarios are simulated on the IEEE 33-bus radial distribution test system. The simulation results show that the proposed method is more effective and has higher capability for solving the problem of capacitor and DG placement, compared to previously proposed methods. Using the proposed method in this paper, the value of active power losses as well as bus voltage profile are improved more than other investigated methods.
کلیدواژهها [English]
- Optimal placement
- Capacitor Bank
- Distributed Generation (DG)
- reliability
- SRGSO Algorithm
مراجع
[1] A. Ansari, F. Haghighatdar-Fesharaki, “Placement of phasor measurement units in power networks and optimal distribution of measurement redundancy”, Journal of Intelligent Procedures in Electrical Technology, vol. 9, no. 36, pp. 3-14, Winter 2019 (in Persian).
[2] M. Mahdavian, N. Behzadfar, “A review of wind energy conversion system and application of various induction generators”. vol. 8, no. 4, pp. 55-66, Journal of Novel Researches on Electrical Power, Winter 2020 (in Persian).
[3] M. Doostan, S. Navaratnan, S. Mohajeryami, V. Cecchi, "Concurrent placement of distributed generation resources and capacitor banks in distribution systems", Proceeding of the IEEE/NAPS), pp. 1-6, Denver, CO, USA, Nov. 2016 (doi: 10.1109/NAPS.2016.7747935).
[4] S. Nawaz, A.K. Bansal, M.P. Sharma, "Allocation of DG and capacitor units for power loss reduction in radial distribution system", Proceeding of the IEEE/ICRAIE, pp. 1-6, Jaipur, India, Dec. 2016 (doi:10.1109/ICRAIE.2016.7939475).
[5] K.S. Sambaiah, "A review on optimal allocation and sizing techniques for DG in distribution systems", International Journal of Renewable Energy Research, vol. 8, no. 3, pp.1236-1256, Sept. 2018.
[6] N. Gnanasekaran, S. Chandramohan, P. SathishKumar, A.M. Imran, "Optimal placement of capacitors in radial distribution system using shark smell optimization algorithm", Ain Shams Engineering Journal, vol. 7, no. 2, pp. 907-916, June 2016 (doi:10. 1016/j.asej.2016.01.006).
[7] R. Baghipour, S. M.Hosseini, "Placement of DG and capacitor for loss reduction, reliability and voltage improvement in distribution networks using BPSO", I.J. Intelligent Systems and Applications, vol.12, no.12, pp. 57-64, Nov. 2012 (doi:10.5815/ijisa.2012.12.08).
[8] A. J. Mena, J. A. M. Garcia, "An efficient approach for the siting and sizing problem of distributed generatio", Electrical Power and Energy Systems, vol. 69, pp.167-172, July 2015 (doi: 10. 1016/j.ijepes. 2015.01.011).
[9] H. Bagheri, M. Shakarami, “Novel fuzzy-iwo method for reconfiguration simultaneous optimal DG units allocation”, Journal of Intelligent Procedures in Electrical Technology, vol. 6, no. 21, pp. 13-20, Spring 2015 (in Persian).
[10] M. Fooladgar, E. Rokrok, B. Fani, G. Shahgholian, “Evaluation of the trajectory sensitivity analysis of the DFIG control parameters in response to changes in wind speed and the line impedance connection to the grid DFIG”, Journal of Intelligent Procedures in Electrical Technology, vol. 5, no. 20, pp. 37-54, Winter 2015 (in Persian).
[11] C. Wang, M. H. Nehrir, "Analytical approaches for optimal placement of distributed generation sources in power systems", IEEE Trans.power syst., vol. 19, no. 4, pp. 2068-2076, Nov. 2004 (doi: 10.1109/TPWRS. 2004.836189).
[12] L. F. Ochoa, A. Padilha-Feltrin, G. P. Harrison, "Evaluating distributed generation impacts with a multi objective index", IEEE Trans.power delivery, vol. 21, no. 3, p.p. 1452-1458, July. 2006, (doi: 10.1109/TPWRD.2005.860262).
[13] S. Ganguly, D. Samajpati, "Distributed generation allocation with on-load tap changer on radial distribution networks using adaptive genetic algorithm", Applied Soft Computing, vol. 59, pp. 45-67, Oct. 2017 (doi: 10.1016/j.asoc.2017.05.041).
[14] A. Kaviani-Arani, "Optimal placement and sizing of distributed generation units using Co-Evolutionary particle swarm optimization algorithms", TELKOMNIKA Indonesian Journal of Electrical Engineering, vol. 13, no. 2, pp. 247-256, Feb. 2015 (doi: 10.11591/telkomnika.v13i2.7026 ).
[15] N. Mohandas, R. Balamurugan, L. Lakshminarasimman, "Optimal location and sizing of real power DG units to improve the voltage stability in the distribution system using ABC algorithm united with chaos", International journal of Electrical Power and Energy Systems, vol. 66, pp. 41-52, March 2015 (doi: 10.1016/j.ijepes.2014.10.033).
[16] CH. Yammani, S. Maheswarapu, M. S. Kumari, "Optimal Placement and sizing of DER's with load models using BAT algorithm", Arabian Journal for Science and Engineering, Springer, vol. 39, no. 6, pp. 4891-4899. June. 2014 (doi: 10.1007/S13369-014-1174-8).
[17] D. R. Prabha, T. Jayabarathi, "Optimal placement and sizing of multiple distributed generating units in distribution networks by invasive weed optimization algorithm", Ain Shams Engineering Journal, vol. 7, no. 2, pp. 683-694, June. 2016 (doi: 10.1016/j.asej.2015.05.014).
[18] H. B. Tolabi, M. H. Ali, M. Rizwan "Novel hybrid fuzzy-intelligent water drops approach for optimal feeder multi objective reconfiguration by considering Multiple-Distributed generation", Journal of Operation and Automation in Power Engineering, vol. 2, no. 2, pp. 91-102, Summer and Autumn 2014.
[19] D. B. Prakash, C. Lakshminarayana, "DG placements in radial distribution system for multi objectives using Whale optimization algorithm", Alexandria Engineering Journal, vol. 57, no. 4, pp. 2797-2806, Dec. 2018 (doi: 10.1016/j.aej.2017.11.003).
[20] U. Sultana et al, "Placement and sizing of multiple distributed generation and battery swapping stations using Grasshopper optimizer algorithm", Energy, vol. 165, pp. 408-421, Dec. 2018 (doi: 10.1016/j.energy 2018.09.083).
[21] T. P. Nguyen, D. N. VO, T. T. Tran, "Optimal number, location, and size of distributed generators in distribution systems by symbiotic organism search based method", Power Engineering and Electrical Engineering, vol.15, no. 5, pp. 724-735, Jan. 2017 (doi: 10.15598/aeee.v15i5.2355).
[22] C. H. Chang, "Reconfiguration and capacitor placement for loss reduction of distribution systems by Ant colony search algorithm", IEEE Trans. on Power Systems, vol.23, no. 4, pp. 1747-1755, Nov. 2008 (doi: 10.1109/ TPWRS.2008.2002169).
[23] S. Sultana, P. K. Roy, "Optimal capacitor placement in radial distribution systems using teaching learning based optimization", International journal of Electrical Power and Energy Systems, pp. 387–398, Jan. 2014 (doi: 10.1016/ j.ijepes.2013.07.011).
[24] N. Gnanasekaran, S. Chandramohan, P. S. Kumar, A. M. Imran, "Optimal placement of capacitors in radial distribution system using shark smell optimization algorithm", Ain Shams Engineering Journal, vol. 7, no. 2, pp. 907-916, June. 2016 (doi: 10.1016/j.asej.2016.01.006).
[25] K. R. Devabalaji, T. Yuvaraj, K. Ravi, "An efficient method for solving the optimal sitting and sizing problem of capacitor banks based on cuckoo search algorithm", Ain Shams Engineering Journal, vol. 9, no. 4, pp. 589–597, Dec. 2018 (doi: 10.1016/j.asej.2016.04.005).
[26] G. w. Chang, W. C. Chang, C. S. Chuang, D. Y. Shih, "Fuzzy logic and immune-based algorithm for placement and sizing of shunt capacitor banks in a distorted power network", IEEE Trans. power delivery, vol. 26, no. 4, pp. 2145-2153, Oct. 2011(doi: 10.1109/TPWRD.2011.2167246).
[27] J. H. D. Onaka et al, "A posteriori decision analysis based on resonance index and NSGA-II applied to the capacitor banks placement problem", Electric Power Systems Research, vol.151, pp. 296–307, May. 2017 (doi: 10.1016/j.epsr. 2017.05.041).
[28] E. R. Biju, M. Anitha, "Placement of DG and capacitor for loss reduction and reliability improvement in radial distribution systems using BFA", ARPN Journal of Engineering and Applied Sciences, vol. 10, no 20, pp. 9604-9613, Nov. 2015.
[29] V. Kona, R. Kollu, "A Multi-Objective approach for DG and capacitor placement using harmony search algorithm", Proceeding of the IEEE/ICOAC, pp. 320-325, Chennai, India, Dec. 2017 (doi:10.1109/ICoAC.2017.8441380).
[30] A. A. Abou El-Ela, R. A. El-Sehiemy, A. S. Abbas, "Optimal placement and sizing of distributed generation and capacitor banks in distribution systems using water cycle algorithm", IEEE Systems Journal, vol. 12, no. 4, pp. 3629-3636, Dec. 2018 (doi: 10.1109/JSYST.2018.2796847).
[31] K. Muthukumar, S. Jayalalitha, "Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique", International journal Electrical Power and Energy Systems, pp. 299-319, vol. 78, June. 2016 (doi: 10.1016/j.ijepes.2015.11.019).
[32] E. A. Almabsout, R. A. EL-Sehiemy, O. N. Ucan, O. Bayat, "A hybrid local Search-Genetic algorithm for simultaneous placement of DG units and shunt capacitors in radial distribution systems", IEEE Access, vol.8, pp. 54465-54481, Mar. 2020 (doi:10.1109/ACCESS.2020.2981406 ).
[33] S. Kamel, A. Amin, A. Selim, M. H. Ahmed, "Optimal placement of DG and capacitor in radial distribution systems considering load variation", Proceeding of the IEEE/ICCCEEE, Khartoum, Sudan, Sudan, Sept. 2019 (doi: 10. 1109/ICCCEEE46830.2019.9071384 ).
[34] M. Abbasi, "Optimal capacitor placement to improve distribution network efficiency by considering reliability of capacitors", Proceeding of the ICEECET Norway, 1395 (https://www.civilica.com/Paper-ICEECET03-ICEECET03_002.html (.
[35] R. E. Brown, "Electric power distribution reliability", New York. Basel, Marcel Dekker Inc., 2009.
[36] IEEE 1366-2012, "IEEE Guide for electric power distribution reliability indices IEEE", Power & Energy Society, May.2012.
[37] J. A. M. Rupa, S. Ganesh, "Power flow analysis for radial distribution system using backward/forward sweep method", World Academy of Science, Engineering and Technology International Journal of Electrical and Computer Engineering, vol. 8, no. 10, pp. 1628-1632, 2014.
[38] A. Zeinalzadeh, Y. Mohammadi, M. H. Moradi, " Optimal multi objective placement and sizing of multiple DGs and shunt capacitor banks simultaneously considering load uncertainty via MOPSO approach", Electrical Power and Energy Systems, pp. 336-349, vol. 67, May. 2015 (doi: 10.1016/j.ijepes.2014.12.010).
[39] S. He, Q. H. Wu, J. R. Saunders, "Group search optimizer: An optimal algorithm inspired by animal searching behavior", IEEE Trans. on Evolutionary Computation, pp. 973-990, vol. 13, no. 5, Oct. 2009 (doi: 10.1109/TEVC.2009.2011992).
[40] M. Hasanzadeh, S. Sadeghi, A. Rezvanian, M. R. Meybodi, " Success rate group search optimiser", Journal of Experimental & Theoretical Artificial Intelligence, pp. 53-69, no. 5, Nov. 2014 (doi:10.1080/0952813X. 2014.971467).
[41] S. Banerjee, P. K. Ghosh, "Study of loading status for all branches in chronological order at different conditions in a radial distribution systems using reactive loading index technique", Proceeding of the IEEE/PEDES, New Delhi, India, Dec. 2010 (doi: 10.1109/PEDES.2010.5712450).
[42] A. Khodabakhshian, M. H. Andishgar, "Simultaneous placement and sizing of DGs and shunt capacitors in distribution systems by using IMDE algorithm", Electrical Power and Energy Systems, pp. 599-607, vol. 82, Nov. 2016 (doi: 10.1016/j.ijepes.2016.04.002 ).
[43] S. Gopiya, D. K. Khatod, M. P. Sharma, "Optimal allocation of combined DG and capacitor for real power loss minimization in distribution networks", Electrical Power and Energy Systems, pp. 967-973, vol. 53, Dec. 2013 (doi: 10. 1016/j.ijepes.2013.06.008 ).
http://jipet.iaun.ac.ir/article_676187.html