***.*** ... گنجینه ... فشارکی ... ها ***.***

****.**** کنز الفشا ر کیو ن ************** Fesharkies's Treasure ****.****

***.*** ... گنجینه ... فشارکی ... ها ***.***

****.**** کنز الفشا ر کیو ن ************** Fesharkies's Treasure ****.****

***.*** ... گنجینه ... فشارکی ... ها ***.***

########## بنام خدا ##########
#پایگاه جامع اطلاع رسانی در موضوعات زیر #
..... با سلام و تحیت .. و .. خوشامدگویی .....
*** برای یافتن مطالب مورد نظر : داخل "طبقه بندی موضوعی " یا " کلمات کلیدی"شوید. ویا کلمه موردنظر را در"جستجو" درج کنید.***

طبقه بندی موضوعی
بایگانی
محبوب ترین مطالب

AntNet with Reward-Penalty Reinforcement Learning

دوشنبه, ۱۶ مهر ۱۳۹۷، ۰۱:۲۴ ق.ظ

Mehdi N. Fesharaki

 

AntNet with Reward-Penalty Reinforcement Learning

Conference Paper (PDF Available) · July 2010 with 125 Reads

DOI: 10.1109/CICSyN.2010.11 · Source: DBLP

Conference: Second International Conference on Computational Intelligence, Communication Systems and Networks, CICSyN 2010, Liverpool, UK, 28-30 July, 2010

Cite this publication

Abstract

The paper deals with a modification in the learning phase of AntNet routing algorithm, which improves the system adaptability in the presence of undesirable events. Unlike most of the ACO algorithms which consider reward-inaction reinforcement learning, the proposed strategy considers both reward and penalty onto the action probabilities. As simulation results show, considering penalty in AntNet routing algorithm increases the exploration towards other possible and sometimes much optimal selections, which leads to a more adaptive strategy. The proposed algorithm also uses a self-monitoring solution called Occurrence-Detection, to sense traffic fluctuations and make decision about the level of undesirability of the current status. The proposed algorithm makes use of the two mentioned strategies to prepare a self-healing version of AntNet routing algorithm to face undesirable and unpredictable traffic conditions.

 

https://www.researchgate.net/publication/221258319_AntNet_with_Reward-Penalty_Reinforcement_Learning

 

 

 

موافقین ۰ مخالفین ۰ ۹۷/۰۷/۱۶