***.*** ... گنجینه ... فشارکی ... ها ***.***

****.**** کنز الفشا ر کیو ن ************** Fesharkies's Treasure ****.****

***.*** ... گنجینه ... فشارکی ... ها ***.***

****.**** کنز الفشا ر کیو ن ************** Fesharkies's Treasure ****.****

***.*** ... گنجینه ... فشارکی ... ها ***.***

########## بنام خدا ##########
#پایگاه جامع اطلاع رسانی در موضوعات زیر #
..... با سلام و تحیت .. و .. خوشامدگویی .....
*** برای یافتن مطالب مورد نظر : داخل "طبقه بندی موضوعی " یا " کلمات کلیدی"شوید. ویا کلمه موردنظر را در"جستجو" درج کنید.***

طبقه بندی موضوعی
بایگانی
محبوب ترین مطالب

Elastic Behavior of Functionally Graded Two Tangled Circles Chamber

چهارشنبه, ۳۰ مرداد ۱۳۹۸، ۰۷:۰۱ ق.ظ

Javad Jafari Fesharaki

 

Journal of Applied and Computational Mechanics

 

Elastic Behavior of Functionally Graded Two Tangled Circles Chamber

Article 9Volume 5, Issue 4, Spring 2019, Page 667-679  XMLPDF (2974 K)
Document Type: Research Paper
DOI: 10.22055/JACM.2019.27058.1372
Authors
Javad Jafari Fesharaki  orcid ; Mehran Roghani
Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, 8514143131, Iran
Abstract
This paper presents the numerical elastic solution for a real problem, functionally graded chamber of hydraulic gear pumps under internal pressure. Because of the similarity and complexity for the considering geometry, a bipolar cylindrical coordinate system is used to extract the governing equations. The material properties are considered to vary along the two tangled circles with a power-law function. The two coupled governing equations solved by the differential quadrature method. The results are presented for various material index and show that the complexity in considering geometry and material inhomogeneity can change the stress and displacements value through the geometry efficiently. The results and presented method in this paper for extracting and solving the problem can be used for designing similar geometry more accurate. The results of this research are compared with those reported in the previous work.
Keywords
Complex geometryBipolar cylindrical coordinateFunctionally graded materialDifferential quadrature methodTwo tangled circles chamber
Main Subjects
Applied Mathematics
 
 
References
[1] Ersoy, H., Mercan K., Civalek O., Frequencies of FGM shells and annular plates by the methods of discrete singular convolution and differential quadrature methods, Composite Structures, 183, 2018, 7-20.

 

[2] Naderi Beni, N., Botshekanan Dehkordi M., An extension of Carrera unified formulation in polar coordinate for analysis of circular sandwich plate with FGM core using GDQ method, Composite Structures, 185, 2018, 421-434.

 

[3] Wang, X., Yuan Z., Accurate stress analysis of sandwich panels by the differential quadrature method, Applied Mathematical Modelling, 43, 2017, 548-565.

 

[4] Hosseini, M., Dini A., Eftekhari M., Strain gradient effects on the thermoelastic analysis of a functionally graded micro-rotating cylinder using generalized differential quadrature method, Acta Mechanica, 228(5), 2017, 1563-1580.

 

[5] Demirbas M.D., Thermal stress analysis of functionally graded plates with temperature-dependent material properties using theory of elasticity, Composites Part B: Engineering, 131, 2017, 100-124.

 

[6] Mehditabar, A., Rahimi G., Sadrabadi S.A., Three-dimensional magneto-thermo-elastic analysis of functionally graded cylindrical shell, Applied Mathematics and Mechanics, 38(4), 2017, 479-494.

 

[7] Brischetto, S., Tornabene f., Fantuzzi N., Viola E., 3D exact and 2D generalized differential quadrature models for free vibration analysis of functionally graded plates and cylinders, Meccanica, 51(9), 2016, 2059-2098.

 

[8] Aliyari Parand, A., Alibeigloo A., Static and vibration analysis of sandwich cylindrical shell with functionally graded core and viscoelastic interface using DQM, Composites Part B: Engineering, 126, 2017, 1-16.

 

[9] Adineh, M., Kadkhodayan M., Three-dimensional thermo-elastic analysis and dynamic response of a multi-directional functionally graded skew plate on elastic foundation, Composites Part B: Engineering, 125, 2017, 227-240.

 

[10] Jafari Fesharaki J., Jafari Fesharaki V., Yazdipoor M., Razavian B., Two-dimensional solution for electro-mechanical behavior of functionally graded piezoelectric hollow cylinder, Applied Mathematical Modelling, 36(11), 2012, 5521-5533.

 

[11] Shafiei, N., Mirjavadi S.S., Afshari B.M., Rabby S., Hamouda A. M. S., Nonlinear thermal buckling of axially functionally graded micro and nanobeams, Composite Structures, 168, 2017, 428-439.

 

[12] Zghal, S., Frikha A., Dammak F., Mechanical buckling analysis of functionally graded power-based and carbon nanotubes-reinforced composite plates and curved panels, Composites Part B: Engineering, 150, 2018, 165-183.

 

[13] Zghal, S., Frikha A., Dammak F., Free vibration analysis of carbon nanotube-reinforced functionally graded composite shell structures, Applied Mathematical Modelling, 53, 2018, 132-155.

 

[14] Yang J., Wu H., Kitipornchai S., Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams, Composite Structures, 161, 2017, 111-118.

 

[15] Daviran S., Sassan M., Alibakhsh K., Omid A., Differential quadrature method for thermal shock analysis of CNT reinforced metal-ceramic functionally graded disc, Composite Structures, 161, 2017, 299-307.

 

[16] Ansari R., Shojaei M.F., Gholami R., Size-dependent nonlinear mechanical behavior of third-order shear deformable functionally graded microbeams using the variational differential quadrature method, Composite Structures, 136, 2016, 669-683.

 

[17] Atrian, A., Jafari Fesharaki J., Nourbakhsh S.H., Thermo-electromechanical behavior of functionally graded piezoelectric hollow cylinder under non-axisymmetric loads, Applied Mathematics and Mechanics, 36(7), 2015, 939-954.

 

[18] Bahadori R., Najafizadeh M.M., Free vibration analysis of two-dimensional functionally graded axisymmetric cylindrical shell on Winkler–Pasternak elastic foundation by First-order Shear Deformation Theory and using Navier-differential quadrature solution methods, Applied Mathematical Modelling, 39(16), 2015, 4877-4894.

 

[19] Ansari R., Faghih Shojaei M., Shahabodini A., Bazdid-Vahdati M., Three-dimensional bending and vibration analysis of functionally graded nanoplates by a novel differential quadrature-based approach, Composite Structures, 131, 2015, 753-764.

 

[20] Zghal S., Frikha A., Dammak F., Static analysis of functionally graded carbon nanotube-reinforced plate and shell structures, Composite Structures, 176, 2017, 1107-1123.

 

[21] Frikha A., Zghal S., Dammak F., Dynamic analysis of functionally graded carbon nanotubes-reinforced plate and shell structures using a double directors finite shell element, Aerospace Science and Technology, 78, 2018, 438-451.

 

[22] Alibeigloo A., Nouri V., Static analysis of functionally graded cylindrical shell with piezoelectric layers using differential quadrature method, Composite Structures, 92(8), 2010, 1775-1785.

 

[23] Li D., Deng Z., Chen G., Xiao H., Zhu L., Thermomechanical bending analysis of sandwich plates with both functionally graded face sheets and functionally graded core, Composite Structures, 169, 2017, 29-41.

 

[24] Norouzi H., Alibeigloo A., Three dimensional static analysis of viscoelastic FGM cylindrical panel using state space differential quadrature method, European Journal of Mechanics - A/Solids, 61, 2017, 254-266.

 

[25] Civalek Ö., Free vibration of carbon nanotubes reinforced (CNTR) and functionally graded shells and plates based on FSDT via discrete singular convolution method, Composites Part B: Engineering, 111, 2017, 45-59.

 

[26] Akbari Alashti R., Khorsand M., Three-dimensional dynamo-thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by DQ-FD coupled, International Journal of Pressure Vessels and Piping, 96, 2012, 49-67.

 

[27] Zghal S., Frikha A., Dammak F., Non-linear bending analysis of nanocomposites reinforced by graphene-nanotubes with finite shell element and membrane enhancement, Engineering Structures, 158, 2018, 95-109.

 

[28] Frikha A., Zghal S., Dammak F., Finite rotation three and four nodes shell elements for functionally graded carbon nanotubes-reinforced thin composite shells analysis, Computer Methods in Applied Mechanics and Engineering, 329, 2018, 289-311.

 

[29] Yas M.H., Sobhani Aragh B., Elasticity solution for free vibration analysis of four-parameter functionally graded fiber orientation cylindrical panels using differential quadrature method, European Journal of Mechanics - A/Solids, 30(5), 2011, 631-638.

 

[30] Shojaei M.F., Ansari R., Variational differential quadrature: a technique to simplify numerical analysis of structures, Applied Mathematical Modelling, 49, 2017, 705-738.

 

[31] Setoodeh, A.R., Tahani M., Selahi E., Hybrid layerwise-differential quadrature transient dynamic analysis of functionally graded axisymmetric cylindrical shells subjected to dynamic pressure, Composite Structures, 93(11), 2011, 2663-2670.

 

[32] Malekzadeh P., Three-dimensional thermal buckling analysis of functionally graded arbitrary straight-sided quadrilateral plates using differential quadrature method, Composite Structures, 93(4), 2011, 1246-1254.

 

[33] Jodaei A., Jalal M., Yas M.H., Free vibration analysis of functionally graded annular plates by state-space based differential quadrature method and comparative modeling by ANN, Composites Part B: Engineering, 43(2), 2012, 340-353.

 

[34] Janghorban M., Zare A., Free vibration analysis of functionally graded carbon nanotubes with variable thickness by differential quadrature method, Physica E: Low-dimensional Systems and Nanostructures, 43(9), 2011, 1602-1604.

 

[35] Alibeigloo A., Liew K., Elasticity solution of free vibration and bending behavior of functionally graded carbon nanotube-reinforced composite beam with thin piezoelectric layers using differential quadrature method, International Journal of Applied Mechanics, 7(01), 2015, 1550002.

 

[36] Trabelsi S., Frikha A., Zghal S., Dammak F., Thermal post-buckling analysis of functionally graded material structures using a modified FSDT, International Journal of Mechanical Sciences, 144, 2018, 74-89.

 

[37] Trabelsi S., Frikha A., Zghal S., Dammak F., A modified FSDT-based four nodes finite shell element for thermal buckling analysis of functionally graded plates and cylindrical shells, Engineering Structures, 178, 2019, 444-459.

 

[38] Heydarpour Y., Malekzadeh P., Golbahar Haghighi M., Vaghefi M., Thermoelastic analysis of rotating laminated functionally graded cylindrical shells using layerwise differential quadrature method, Acta Mechanica, 223(1), 2012, 81-93.

 

[39] Alashti R.A., Khorsand M., Three-dimensional thermo-elastic analysis of a functionally graded cylindrical shell with piezoelectric layers by differential quadrature method, International Journal of Pressure Vessels and Piping, 88(5), 2011, 167-180.

 

[40] Bellman R., Kashef B.G., Casti J., Differential quadrature: A technique for the rapid solution of nonlinear partial differential equations, Journal of Computational Physics, 10(1), 1972, 40-52.

 

[41] Shu C., Differential Quadrature and Its Application in Engineering. 2000, London: Springer-Verla.

 

[42] Horgan C.O., Chan A.M., The Pressurized Hollow Cylinder or Disk Problem for Functionally Graded Isotropic Linearly Elastic Materials, Journal of Elasticity, 55(1), 1999, 43-59.

 

[43] Heinbockel J.H., Introduction to Tensor Calculus and Continuum Mechanics. 2001: Trafford.

 

Statistics

Article View: 161

PDF Download: 108

 

http://jacm.scu.ac.ir/article_14043.html

موافقین ۰ مخالفین ۰ ۹۸/۰۵/۳۰